3.2.11 \(\int x^5 \sqrt {d+e x^2} (a+b \sec ^{-1}(c x)) \, dx\) [111]

3.2.11.1 Optimal result
3.2.11.2 Mathematica [C] (verified)
3.2.11.3 Rubi [A] (verified)
3.2.11.4 Maple [F]
3.2.11.5 Fricas [A] (verification not implemented)
3.2.11.6 Sympy [F]
3.2.11.7 Maxima [F(-2)]
3.2.11.8 Giac [F]
3.2.11.9 Mupad [F(-1)]

3.2.11.1 Optimal result

Integrand size = 23, antiderivative size = 403 \[ \int x^5 \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {b \left (23 c^4 d^2+12 c^2 d e-75 e^2\right ) x \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}}{1680 c^5 e^2 \sqrt {c^2 x^2}}+\frac {b \left (29 c^2 d-25 e\right ) x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}}{840 c^3 e^2 \sqrt {c^2 x^2}}-\frac {b x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{5/2}}{42 c e^2 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}+\frac {8 b c d^{7/2} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{105 e^3 \sqrt {c^2 x^2}}-\frac {b \left (105 c^6 d^3-35 c^4 d^2 e+63 c^2 d e^2+75 e^3\right ) x \text {arctanh}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{1680 c^6 e^{5/2} \sqrt {c^2 x^2}} \]

output
1/3*d^2*(e*x^2+d)^(3/2)*(a+b*arcsec(c*x))/e^3-2/5*d*(e*x^2+d)^(5/2)*(a+b*a 
rcsec(c*x))/e^3+1/7*(e*x^2+d)^(7/2)*(a+b*arcsec(c*x))/e^3+8/105*b*c*d^(7/2 
)*x*arctan((e*x^2+d)^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))/e^3/(c^2*x^2)^(1/2)- 
1/1680*b*(105*c^6*d^3-35*c^4*d^2*e+63*c^2*d*e^2+75*e^3)*x*arctanh(e^(1/2)* 
(c^2*x^2-1)^(1/2)/c/(e*x^2+d)^(1/2))/c^6/e^(5/2)/(c^2*x^2)^(1/2)+1/840*b*( 
29*c^2*d-25*e)*x*(e*x^2+d)^(3/2)*(c^2*x^2-1)^(1/2)/c^3/e^2/(c^2*x^2)^(1/2) 
-1/42*b*x*(e*x^2+d)^(5/2)*(c^2*x^2-1)^(1/2)/c/e^2/(c^2*x^2)^(1/2)+1/1680*b 
*(23*c^4*d^2+12*c^2*d*e-75*e^2)*x*(c^2*x^2-1)^(1/2)*(e*x^2+d)^(1/2)/c^5/e^ 
2/(c^2*x^2)^(1/2)
 
3.2.11.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 1.62 (sec) , antiderivative size = 342, normalized size of antiderivative = 0.85 \[ \int x^5 \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\frac {32 a \left (d+e x^2\right ) \left (8 d^3-4 d^2 e x^2+3 d e^2 x^4+15 e^3 x^6\right )-\frac {2 b e \sqrt {1-\frac {1}{c^2 x^2}} x \left (d+e x^2\right ) \left (75 e^2+2 c^2 e \left (19 d+25 e x^2\right )+c^4 \left (-41 d^2+22 d e x^2+40 e^2 x^4\right )\right )}{c^5}+\frac {128 b d^4 \sqrt {1+\frac {d}{e x^2}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,\frac {1}{c^2 x^2},-\frac {d}{e x^2}\right )}{c x}+\frac {b e \left (105 c^6 d^3-35 c^4 d^2 e+63 c^2 d e^2+75 e^3\right ) \sqrt {1-\frac {1}{c^2 x^2}} x^3 \sqrt {1+\frac {e x^2}{d}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,c^2 x^2,-\frac {e x^2}{d}\right )}{c^5 \sqrt {1-c^2 x^2}}+32 b \left (d+e x^2\right ) \left (8 d^3-4 d^2 e x^2+3 d e^2 x^4+15 e^3 x^6\right ) \sec ^{-1}(c x)}{3360 e^3 \sqrt {d+e x^2}} \]

input
Integrate[x^5*Sqrt[d + e*x^2]*(a + b*ArcSec[c*x]),x]
 
output
(32*a*(d + e*x^2)*(8*d^3 - 4*d^2*e*x^2 + 3*d*e^2*x^4 + 15*e^3*x^6) - (2*b* 
e*Sqrt[1 - 1/(c^2*x^2)]*x*(d + e*x^2)*(75*e^2 + 2*c^2*e*(19*d + 25*e*x^2) 
+ c^4*(-41*d^2 + 22*d*e*x^2 + 40*e^2*x^4)))/c^5 + (128*b*d^4*Sqrt[1 + d/(e 
*x^2)]*AppellF1[1, 1/2, 1/2, 2, 1/(c^2*x^2), -(d/(e*x^2))])/(c*x) + (b*e*( 
105*c^6*d^3 - 35*c^4*d^2*e + 63*c^2*d*e^2 + 75*e^3)*Sqrt[1 - 1/(c^2*x^2)]* 
x^3*Sqrt[1 + (e*x^2)/d]*AppellF1[1, 1/2, 1/2, 2, c^2*x^2, -((e*x^2)/d)])/( 
c^5*Sqrt[1 - c^2*x^2]) + 32*b*(d + e*x^2)*(8*d^3 - 4*d^2*e*x^2 + 3*d*e^2*x 
^4 + 15*e^3*x^6)*ArcSec[c*x])/(3360*e^3*Sqrt[d + e*x^2])
 
3.2.11.3 Rubi [A] (verified)

Time = 1.50 (sec) , antiderivative size = 369, normalized size of antiderivative = 0.92, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {5761, 27, 7282, 2118, 27, 171, 27, 171, 27, 175, 66, 104, 217, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^5 \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx\)

\(\Big \downarrow \) 5761

\(\displaystyle -\frac {b c x \int \frac {\left (e x^2+d\right )^{3/2} \left (15 e^2 x^4-12 d e x^2+8 d^2\right )}{105 e^3 x \sqrt {c^2 x^2-1}}dx}{\sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b c x \int \frac {\left (e x^2+d\right )^{3/2} \left (15 e^2 x^4-12 d e x^2+8 d^2\right )}{x \sqrt {c^2 x^2-1}}dx}{105 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 7282

\(\displaystyle -\frac {b c x \int \frac {\left (e x^2+d\right )^{3/2} \left (15 e^2 x^4-12 d e x^2+8 d^2\right )}{x^2 \sqrt {c^2 x^2-1}}dx^2}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 2118

\(\displaystyle -\frac {b c x \left (\frac {\int \frac {3 e \left (e x^2+d\right )^{3/2} \left (16 c^2 d^2-\left (29 c^2 d-25 e\right ) e x^2\right )}{2 x^2 \sqrt {c^2 x^2-1}}dx^2}{3 c^2 e}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b c x \left (\frac {\int \frac {\left (e x^2+d\right )^{3/2} \left (16 c^2 d^2-\left (29 c^2 d-25 e\right ) e x^2\right )}{x^2 \sqrt {c^2 x^2-1}}dx^2}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 171

\(\displaystyle -\frac {b c x \left (\frac {\frac {\int \frac {\sqrt {e x^2+d} \left (64 c^4 d^3-e \left (23 d^2 c^4+12 d e c^2-75 e^2\right ) x^2\right )}{2 x^2 \sqrt {c^2 x^2-1}}dx^2}{2 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (29 c^2 d-25 e\right ) \left (d+e x^2\right )^{3/2}}{2 c^2}}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b c x \left (\frac {\frac {\int \frac {\sqrt {e x^2+d} \left (64 c^4 d^3-e \left (23 d^2 c^4+12 d e c^2-75 e^2\right ) x^2\right )}{x^2 \sqrt {c^2 x^2-1}}dx^2}{4 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (29 c^2 d-25 e\right ) \left (d+e x^2\right )^{3/2}}{2 c^2}}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 171

\(\displaystyle -\frac {b c x \left (\frac {\frac {\frac {\int \frac {128 d^4 c^6+e \left (105 d^3 c^6-35 d^2 e c^4+63 d e^2 c^2+75 e^3\right ) x^2}{2 x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2}{c^2}-\frac {e \sqrt {c^2 x^2-1} \left (23 c^4 d^2+12 c^2 d e-75 e^2\right ) \sqrt {d+e x^2}}{c^2}}{4 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (29 c^2 d-25 e\right ) \left (d+e x^2\right )^{3/2}}{2 c^2}}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b c x \left (\frac {\frac {\frac {\int \frac {128 d^4 c^6+e \left (105 d^3 c^6-35 d^2 e c^4+63 d e^2 c^2+75 e^3\right ) x^2}{x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2}{2 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (23 c^4 d^2+12 c^2 d e-75 e^2\right ) \sqrt {d+e x^2}}{c^2}}{4 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (29 c^2 d-25 e\right ) \left (d+e x^2\right )^{3/2}}{2 c^2}}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 175

\(\displaystyle -\frac {b c x \left (\frac {\frac {\frac {128 c^6 d^4 \int \frac {1}{x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2+e \left (105 c^6 d^3-35 c^4 d^2 e+63 c^2 d e^2+75 e^3\right ) \int \frac {1}{\sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2}{2 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (23 c^4 d^2+12 c^2 d e-75 e^2\right ) \sqrt {d+e x^2}}{c^2}}{4 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (29 c^2 d-25 e\right ) \left (d+e x^2\right )^{3/2}}{2 c^2}}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 66

\(\displaystyle -\frac {b c x \left (\frac {\frac {\frac {128 c^6 d^4 \int \frac {1}{x^2 \sqrt {c^2 x^2-1} \sqrt {e x^2+d}}dx^2+2 e \left (105 c^6 d^3-35 c^4 d^2 e+63 c^2 d e^2+75 e^3\right ) \int \frac {1}{c^2-e x^4}d\frac {\sqrt {c^2 x^2-1}}{\sqrt {e x^2+d}}}{2 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (23 c^4 d^2+12 c^2 d e-75 e^2\right ) \sqrt {d+e x^2}}{c^2}}{4 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (29 c^2 d-25 e\right ) \left (d+e x^2\right )^{3/2}}{2 c^2}}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {b c x \left (\frac {\frac {\frac {256 c^6 d^4 \int \frac {1}{-x^4-d}d\frac {\sqrt {e x^2+d}}{\sqrt {c^2 x^2-1}}+2 e \left (105 c^6 d^3-35 c^4 d^2 e+63 c^2 d e^2+75 e^3\right ) \int \frac {1}{c^2-e x^4}d\frac {\sqrt {c^2 x^2-1}}{\sqrt {e x^2+d}}}{2 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (23 c^4 d^2+12 c^2 d e-75 e^2\right ) \sqrt {d+e x^2}}{c^2}}{4 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (29 c^2 d-25 e\right ) \left (d+e x^2\right )^{3/2}}{2 c^2}}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {b c x \left (\frac {\frac {\frac {2 e \left (105 c^6 d^3-35 c^4 d^2 e+63 c^2 d e^2+75 e^3\right ) \int \frac {1}{c^2-e x^4}d\frac {\sqrt {c^2 x^2-1}}{\sqrt {e x^2+d}}-256 c^6 d^{7/2} \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{2 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (23 c^4 d^2+12 c^2 d e-75 e^2\right ) \sqrt {d+e x^2}}{c^2}}{4 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (29 c^2 d-25 e\right ) \left (d+e x^2\right )^{3/2}}{2 c^2}}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}+\frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {d^2 \left (d+e x^2\right )^{3/2} \left (a+b \sec ^{-1}(c x)\right )}{3 e^3}+\frac {\left (d+e x^2\right )^{7/2} \left (a+b \sec ^{-1}(c x)\right )}{7 e^3}-\frac {2 d \left (d+e x^2\right )^{5/2} \left (a+b \sec ^{-1}(c x)\right )}{5 e^3}-\frac {b c x \left (\frac {\frac {\frac {\frac {2 \sqrt {e} \left (105 c^6 d^3-35 c^4 d^2 e+63 c^2 d e^2+75 e^3\right ) \text {arctanh}\left (\frac {\sqrt {e} \sqrt {c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{c}-256 c^6 d^{7/2} \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{2 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (23 c^4 d^2+12 c^2 d e-75 e^2\right ) \sqrt {d+e x^2}}{c^2}}{4 c^2}-\frac {e \sqrt {c^2 x^2-1} \left (29 c^2 d-25 e\right ) \left (d+e x^2\right )^{3/2}}{2 c^2}}{2 c^2}+\frac {5 e \sqrt {c^2 x^2-1} \left (d+e x^2\right )^{5/2}}{c^2}\right )}{210 e^3 \sqrt {c^2 x^2}}\)

input
Int[x^5*Sqrt[d + e*x^2]*(a + b*ArcSec[c*x]),x]
 
output
(d^2*(d + e*x^2)^(3/2)*(a + b*ArcSec[c*x]))/(3*e^3) - (2*d*(d + e*x^2)^(5/ 
2)*(a + b*ArcSec[c*x]))/(5*e^3) + ((d + e*x^2)^(7/2)*(a + b*ArcSec[c*x]))/ 
(7*e^3) - (b*c*x*((5*e*Sqrt[-1 + c^2*x^2]*(d + e*x^2)^(5/2))/c^2 + (-1/2*( 
(29*c^2*d - 25*e)*e*Sqrt[-1 + c^2*x^2]*(d + e*x^2)^(3/2))/c^2 + (-((e*(23* 
c^4*d^2 + 12*c^2*d*e - 75*e^2)*Sqrt[-1 + c^2*x^2]*Sqrt[d + e*x^2])/c^2) + 
(-256*c^6*d^(7/2)*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 + c^2*x^2])] + ( 
2*Sqrt[e]*(105*c^6*d^3 - 35*c^4*d^2*e + 63*c^2*d*e^2 + 75*e^3)*ArcTanh[(Sq 
rt[e]*Sqrt[-1 + c^2*x^2])/(c*Sqrt[d + e*x^2])])/c)/(2*c^2))/(4*c^2))/(2*c^ 
2)))/(210*e^3*Sqrt[c^2*x^2])
 

3.2.11.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 171
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*(( 
e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p + 2)) 
  Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2 
) - h*(b*c*e*m + a*(d*e*(n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) 
+ h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] 
 && IntegersQ[2*m, 2*n, 2*p]
 

rule 175
Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_ 
)))/((a_.) + (b_.)*(x_)), x_] :> Simp[h/b   Int[(c + d*x)^n*(e + f*x)^p, x] 
, x] + Simp[(b*g - a*h)/b   Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)), x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 2118
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f 
_.)*(x_))^(p_.), x_Symbol] :> With[{q = Expon[Px, x], k = Coeff[Px, x, Expo 
n[Px, x]]}, Simp[k*(a + b*x)^(m + q - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 
1)/(d*f*b^(q - 1)*(m + n + p + q + 1))), x] + Simp[1/(d*f*b^q*(m + n + p + 
q + 1))   Int[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*ExpandToSum[d*f*b^q*(m + 
n + p + q + 1)*Px - d*f*k*(m + n + p + q + 1)*(a + b*x)^q + k*(a + b*x)^(q 
- 2)*(a^2*d*f*(m + n + p + q + 1) - b*(b*c*e*(m + q - 1) + a*(d*e*(n + 1) + 
 c*f*(p + 1))) + b*(a*d*f*(2*(m + q) + n + p) - b*(d*e*(m + q + n) + c*f*(m 
 + q + p)))*x), x], x], x] /; NeQ[m + n + p + q + 1, 0]] /; FreeQ[{a, b, c, 
 d, e, f, m, n, p}, x] && PolyQ[Px, x]
 

rule 5761
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x 
_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Sim 
p[(a + b*ArcSec[c*x])   u, x] - Simp[b*c*(x/Sqrt[c^2*x^2])   Int[SimplifyIn 
tegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, 
 p}, x] && ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) | 
| (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (ILtQ[(m 
 + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))
 

rule 7282
Int[(u_)/(x_), x_Symbol] :> With[{lst = PowerVariableExpn[u, 0, x]}, Simp[1 
/lst[[2]]   Subst[Int[NormalizeIntegrand[Simplify[lst[[1]]/x], x], x], x, ( 
lst[[3]]*x)^lst[[2]]], x] /;  !FalseQ[lst] && NeQ[lst[[2]], 0]] /; NonsumQ[ 
u] &&  !RationalFunctionQ[u, x]
 
3.2.11.4 Maple [F]

\[\int x^{5} \left (a +b \,\operatorname {arcsec}\left (c x \right )\right ) \sqrt {e \,x^{2}+d}d x\]

input
int(x^5*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x)
 
output
int(x^5*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x)
 
3.2.11.5 Fricas [A] (verification not implemented)

Time = 2.37 (sec) , antiderivative size = 1701, normalized size of antiderivative = 4.22 \[ \int x^5 \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\text {Too large to display} \]

input
integrate(x^5*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x, algorithm="fricas")
 
output
[1/6720*(128*b*c^7*sqrt(-d)*d^3*log(((c^4*d^2 - 6*c^2*d*e + e^2)*x^4 - 8*( 
c^2*d^2 - d*e)*x^2 - 4*sqrt(c^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^ 
2 + d)*sqrt(-d) + 8*d^2)/x^4) + (105*b*c^6*d^3 - 35*b*c^4*d^2*e + 63*b*c^2 
*d*e^2 + 75*b*e^3)*sqrt(e)*log(8*c^4*e^2*x^4 + c^4*d^2 - 6*c^2*d*e + 8*(c^ 
4*d*e - c^2*e^2)*x^2 - 4*(2*c^3*e*x^2 + c^3*d - c*e)*sqrt(c^2*x^2 - 1)*sqr 
t(e*x^2 + d)*sqrt(e) + e^2) + 4*(240*a*c^7*e^3*x^6 + 48*a*c^7*d*e^2*x^4 - 
64*a*c^7*d^2*e*x^2 + 128*a*c^7*d^3 + 16*(15*b*c^7*e^3*x^6 + 3*b*c^7*d*e^2* 
x^4 - 4*b*c^7*d^2*e*x^2 + 8*b*c^7*d^3)*arcsec(c*x) - (40*b*c^5*e^3*x^4 - 4 
1*b*c^5*d^2*e + 38*b*c^3*d*e^2 + 75*b*c*e^3 + 2*(11*b*c^5*d*e^2 + 25*b*c^3 
*e^3)*x^2)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2 + d))/(c^7*e^3), 1/6720*(256*b*c^ 
7*d^(7/2)*arctan(-1/2*sqrt(c^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 
 + d)*sqrt(d)/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)) + (105*b*c^6*d^3 
- 35*b*c^4*d^2*e + 63*b*c^2*d*e^2 + 75*b*e^3)*sqrt(e)*log(8*c^4*e^2*x^4 + 
c^4*d^2 - 6*c^2*d*e + 8*(c^4*d*e - c^2*e^2)*x^2 - 4*(2*c^3*e*x^2 + c^3*d - 
 c*e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(e) + e^2) + 4*(240*a*c^7*e^3* 
x^6 + 48*a*c^7*d*e^2*x^4 - 64*a*c^7*d^2*e*x^2 + 128*a*c^7*d^3 + 16*(15*b*c 
^7*e^3*x^6 + 3*b*c^7*d*e^2*x^4 - 4*b*c^7*d^2*e*x^2 + 8*b*c^7*d^3)*arcsec(c 
*x) - (40*b*c^5*e^3*x^4 - 41*b*c^5*d^2*e + 38*b*c^3*d*e^2 + 75*b*c*e^3 + 2 
*(11*b*c^5*d*e^2 + 25*b*c^3*e^3)*x^2)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2 + d))/ 
(c^7*e^3), 1/3360*(64*b*c^7*sqrt(-d)*d^3*log(((c^4*d^2 - 6*c^2*d*e + e^...
 
3.2.11.6 Sympy [F]

\[ \int x^5 \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\int x^{5} \left (a + b \operatorname {asec}{\left (c x \right )}\right ) \sqrt {d + e x^{2}}\, dx \]

input
integrate(x**5*(a+b*asec(c*x))*(e*x**2+d)**(1/2),x)
 
output
Integral(x**5*(a + b*asec(c*x))*sqrt(d + e*x**2), x)
 
3.2.11.7 Maxima [F(-2)]

Exception generated. \[ \int x^5 \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^5*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.11.8 Giac [F]

\[ \int x^5 \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\int { \sqrt {e x^{2} + d} {\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x^{5} \,d x } \]

input
integrate(x^5*(a+b*arcsec(c*x))*(e*x^2+d)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(e*x^2 + d)*(b*arcsec(c*x) + a)*x^5, x)
 
3.2.11.9 Mupad [F(-1)]

Timed out. \[ \int x^5 \sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right ) \, dx=\int x^5\,\sqrt {e\,x^2+d}\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right ) \,d x \]

input
int(x^5*(d + e*x^2)^(1/2)*(a + b*acos(1/(c*x))),x)
 
output
int(x^5*(d + e*x^2)^(1/2)*(a + b*acos(1/(c*x))), x)